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J, (r, z, t) = j Tk (4 dq, q. fq) = q-l ms (~~1 cog ( qr - + j 
0 

We will assume the frequency passband of the recording apparatus to be constrained to 
the band 611 < 0 Q 01. Let AT be the observation time which is sufficient to record these 
freauencies, where Ar>mar (2sc/o,,2x/(o, - o&. We shall also assume that AT< 2, where 

t is the time of wave packet propagation to the vibration-receiver. Then we can 

m 

Jk (r, 2, t) z 
s 

Tk(Q)&* qi-& 

Pi 

write 

instead of the improper integral in (4.4). 
Inverting (4.11, we obtain formulas for the displacement in the far zone 

u (T, 2, t) = U (r, 2, t) ** u,, (r, 0, t) 

w (r, z, t) = W (r, z, t) ** u,, (r, 0, t) 
i nL 

A@, t) **B(r, t)=+ 
sss 

A (q, T) B [(qe + r* - 2rq cm cp)“*, t -T] q dq dq do 

000 

(4.5) 

The limit of integration L(t) is determined by the boundaries of the domain 
limits the stresses uI,(r,O, t) are non-zero. 

Note that the relationships obtained are found for times when multiple wave 

within whose 

diffraction 
by the crack edge is not taken into account. For later times (for a more accurate estimate 
of the energy travelling to the crack edges) the analysis of the problem is more complicated. 
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WITH PLANE INTERNAL AND EDGE CRACKS * 

V.K. VOSTROV 

A brittle half-space with one or two symmetric plane edge cracksexperiencing 
plane strain is considered. Compressive stresses act at infinity to cause 
superposition of opposite edges of the cracks (crack) and their mutual slip. 
Moreover, biaxial tension at infinity is considered for an unbounded brittle 
body with a plane crack. The body is under plane strain conditions and is 
stretched in two mutually orthogonal directions, one of which agrees with 
the direction of the crack. Limits of applicability are determined for 
the solutions of these problems by utilizing a well-known fracturecriterion 
/l-4/, and a more general solution is given, resulting in a technical 
strength condition for the brittle bodies under consideration when there 
is no mutual displacement of the crack edges. 

1. General remarks. The generalization is made on the basis of the following prin- 
ciple /5/: all volumes included with a sphere of diameter 

(1.1) 

are equally strong if the maximum (el) and minimum (es) relative elongations of the diameters 

*Prikl.Matem.Mekhan.,47,5,852-860,1983 
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of these spheres are, respectively, identical, and the relative changes in the volume (e) 
inside them are identical. Here E is Young's modulus, T is the surface energy density, and 
S0 is the resistance to cleavage (the stress at which brittle rupture of a uniaxially st- 

retched rod occurs). 
The quantities /5/ 

are called macrostresses 
ratio. 

a,=2G[ek+vz 
I I-2v ’ k=1,3 (1.2) 

o,=2G[(1+)~-44 

(fundamental), where G is the shear modulus, and v is Poisson's 

It is considered that cleavage cracks are formed in a solid if the strength condition 

/5/ 
Ql + +Jalfl~sl)<~o (1.3) 

is violated where S, is the absolute value of the stress for which brittle fracture of a 
uniaxially compressed rod occurs. 

2. Biaxial loading of an unbounded body with a crack. Let US introduce a 
system of Cartesian coordinates r,Y with origin at the centre of the crack and x axis co- 
incident with the line of the crack. Tension is produced at infinity in the xrY axial 
directions by the stresses UXO, Qv", respectively. 

The asymptotic form of the displacement field ux, uy and the volume strain E has the 
following form in the case of plane strain /6/ 

(2.1) 

2Gu,=+ (~)"X1((2x+i)sin$--ins) -+(x-3)(a/--o,“)rsin0 

2Ge=(x- 1) [*cos %=3--4v 

where 1 is half the crack length l> A, and r,8 are polar coordinates with origin at the apex 
x = 1 of the crack. 

The relative elongation e, of a sphere of diameter A in an arbitrary direction R in 
the x,y plane is evaluated from the formula /7/ 

a, =+ [(u~(~I, 61) - u,(r2,02N ax $ C (uy (rh W- ug h 02)) sin*] (2.2) 

where r,,& are the polar coordinates of the centre of the sphere, $ is the angle made by 
the direction n with the x-axis, and r,,B1 and re,t), are the polar coordinates of the inter- 
sections of the sphere with a line passing through the centre of the sphere in the direction 
n 

rI,% = [r,,’ A Ar, cos (f3, -up) -I- (AC?)*1 'p 

tge1,2 = (2r, sin B0 + A sing)(2r, cos 8, If A cosq)-' 

The macrostrarns e,, e3 are the maximum and minimum values, respectively, of the relative 
elongation as the angle $ varies in the range 0<g<n. 

The relative change (e) in the volume of any sphere equals the volume expansicn at the 
centre of this sphere. Hence, it is not difficult to determine the macrostress using the 
asymptotic formulas (2.1). 

Computations by the strength condition (1.3) and (2.1)-(2.2) showed that the maximum 
macrostresses near the tip of the crack are reached in directions making angles +6 with the 
crack direction: these macrostresses are practically constant as 6 changes by +-IS”. 

Under uniaxial tension in a direction orthogonal to the crack, the angle p 5 approxim- 
ately W', and the maximum macrostress exceeds the corresponding macrostress when the crack 
is extended by approximately 25% /5/ (depending on Poisson's ratio). An analogous result is 
presented in /0/ for idealized stresses (in conformity with the standard concept of stresses 
at a point)_, where the angle 6 equals 60". 

By using the strength condition (1.3), we obtain the crack-formation load under biaxial 

tension. A graph of this load is shown in Fig-l, where u( is the crack-formation load under 
uniaxial tension orthogonal to the crack. It is assumed in the computations that v = 0.25, 
S,IS, = 0, while the approximate formula u, ~((h/22)'!~ holds for ut. 

It follows from the graph that biaxiality of the loading substantially influences the 

fracture of a body only if the tensile stress a," exceeds the stress orthogonal to thecrack 
(a,,"). For cp<t~,O the crack-formation load is close to a constant and agrees with the 
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Griffiths fracture load when (1.1) is used for the structural parameter. 
When the crack-formation load is reached, approximately identical macrostresses hold at 

the end of the crack for different microvolumes in a certain domain. Consequently, the dir- 

ections of macrocrack propagation are responsive to structural inhomogeneities. There can 

hence be several directions of macrocrack propagation (crack bifurcation). Any direction for 
which the crack length has a real value is possible (in a certain range) from the viewpoint 
mentioned. Those directions for which the length of the microcracks that originate is great- 
est will obviously be most probable. The length of the microcracks is here governed by the 
fact that the macrostresses at its tip satisfy condition (1.3) at which the inequality sign 
becomes an equality. 

Under uniaxial tension in a direction orthogonal to the crack, crack development in its 
initial direction will be most probable despite the fact that the most stresses microvolumes 
in the initial crack-formation phase are located at an angle to the crack continuation. The 

mainline crack occurs from within the body in the plane of symmetry after the redistribution 
of the stress caused by fracture of the most stressed microvolumes (the appearance of micro- 
cracks that are not being propagated). If the fracture load 01' is here known from experiment, 

then the magnitude of the structural parameter A z~221(a,~/SJ~ is determined approximately from 

the last formula /5/. But, nevertheless, we use (1.1) for comparison with solutions which 
are obtained by using the well-known fracture criterion/l-4/. This formula follows from the 
preceding one if the experimental quantity ho is replaced by the Griffith fracture load. 

Fig.1 Fig.2 

The disadvantage of the well-known method of computation is that the crack-formationload 
is independent of the stress ax0 and when the inequality a,,"<at" is satisfied the strength 
of the body with the crack will be unlimited. Utilization of the macrostress concept and the 
strength condition (1.3) eliminates these disadvantages and enables the influence ofbiaxiality 
of the loading on the fracture of brittle bodies with a crack to be estimated (Fig-l) - 

3. Brittle .half-plane with two symmetric edge cracks. In this case a quad- 
rantwith one crack (Fig. 2) can be considered because of symmetry. The state of stress of a 
body will be homogeneous if K”, < 0, where 

K”,’ = aoKa - q 

K= = cosa (sin a - Q, cos a) 

2a is the angle between the crack directions, qO is the coefficient of friction, r, is the 
adhesion coefficient, and crO is the absolute value of the compressive stress at infinity. 
When this condition is violated, slipping of the crack edges occurs. The boundary conditions 
here take the form 

e = 0: ue = t,e = 0, r > 0 (3.1) 

8= n. 2 .ae=z,tj=O, r>O (3.2) 

0 = a : Ioel = [z,el = luel = 0, r > 0 (3.3) 
U = a : T,B = qoue + K,“, 0 < r < 1 (3.4) 
0 = a : [u,l = 0, r > 1 (3.5) 

Here I is the polar radius-vector referred to the crack length R,,‘R> A and 8 is the 
polar angle. The components (TfkrIli are the difference between the total stresses anddisplace- 
ments and the corresponding quantities in a body without cracks. The square brackets denote 
a jump in the quantity enclosed in the brackets when the line of the crack is passed through 



[aikl = ui~ (r, a + 0) - oil; (r, a - 0) 

Iuil = ui (r, a + 0) - ui (r, a - 0) 

The condition at infinity 

(Illi = 0 (r-l), r -+ OQ, 0 Q 0 Q n/2 (3.6j 

must be added to the relationships (3.1)-(3.5). 
The general solution atL*,ur*, us* of the homogeneous plane problem of the theory of elas- 

ticity in Mellin transforms for the stresses c,k and the displacements utrus (referred to the 
characteristic dimension R) has the form 

2%" = @ + x) (AC, + Bs,) + (p - 1) (Cc_ + Ds_) (3.7) 

2Gn# =@ - x) (As, - Bc,) + (p - 1) (Cs_ - DC_) 

Q,* = -p I@ + 3) (AC, + Bs+) f (p - 1) (Cc_ + Ds_)l 
us* = p @ - 1) [AC, + Bs, + Cc_ + L’s,] 

~,e = -p[(p + 1) (As, - Bc,) + @ - 1) (Cs_ - DC_)] 

C f = co9 @ -C_ 1) 0, s* = sin (p * 1) 6 

where x=3 -4v for plane strain, and x = (3 - V)/(l -k V) for the plane-parellel state, and A, 

B,C,D are arbitrary functions of the complex parameter p determined from the boundary con- 
ditions. We shall consider the coefficientsA,,B,,C,,D,to correspond to a wedge with aperture 
O< 0 <a; and At, Ba, C,,D, to correspond to the wedge a <0 < n/2. 

The boundary conditions (3.1),(3.3),(3.5) are satisfied if we set 

B,(P) =Dl (P) = 0 

4 (P) = AI @) -_ ~0s (P + 1) a CD- (pY(4p) 

B, (p) = -sin (p + 1) a@- @)/(4p) 
C, 0~) = C, (P) + ~0s (P - 1) a@- (PY(4p) 

D, (P) = sin (P - 1) a@,- (PY(4P) 

@- (P) = i [U, (r, a)] rp dr 
0 

Inserting these expressions into the boundary conditions (3.2) and solving the equations 
obtained, we will have 

-41 (P) = 4 @PO- (pY(4p sin P=) 

Cl @) = 8, @) a- (P)/(~P sin ~4 

S, @) = @ - 1) sin @ - 1) a - p sin ((p f i)a - n)+sin @n - (p + 1)a) 

S, (p) = (p + 1) sin (p + 1) a - p sin ((p - 1) a + n) - sin (px - (p - 1) a) 

Thetransforms of the normal and shear stresses on the line of the crack become 

ce* = (p - 1) [S, (p) co9 @ + 1) a + S%(p) co8 @ - 1) a1 a- (PYq (3.8) 

rre * = -[(p + 1) S1 (p) sin (p + 1) a + (p - 1)s~ @) X sin (p - i) alQt_ (p)iq 
t 

q = 4 sin pn 

Substitution of the transforms obtained into the Mellin-transformed friction condition 
(3.4) results in a functional Wiener-Hopf eguatiorq, 

--ttpp~Go@)~-(p)“~+(p) f+& (3.9) 

Go (P) 2-i 
G (Pi + 2% (P - i) G%(P) 

2sid p + 

G1(p)=(sin2pa+ psin2a)(sin2p($--a)+psin2u)+ 

2(cos2pa - cos2a)(sinap(+-a)- pacasPa) 

Gl(p)=psinZpacesaa+sin2asin*p T 
("--a) 

0,' (P) = f (GO (r, a) - rloae (r, a)) rp dr 
1 
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When there is no friction, the equation obtained in /9/ in connection with the initial 
development of the slip line from the free boundary of the body follows from (3.9). 

The transforms desired @k(p) are analytic in the half-planes Re @)'<i and Re @)> --1 
respectively. As p -+ oo, the following asymptotic formulas /lo/ hold for these transforms 

m(p)= --2~Knlfi, D+(P)= Kd1/-2Rp, p+oo !3.10) 

where K~I is the stress intensity factor at the tip of the crack. 
The coefficient G,(p) of (3.9) has neither poles nor zeroes along the boundary line L = 

{p = -1 -I- it, I t I< M) of the strip of analyticity of the transforms W(p) if a >pO, where 
pa is the angle of internal friction no = tg po. Because of the condition a< n/2 this 

coefficient tends to one as p+ 00 along the line L. For a = p0 the function G, @) has a 
first-order zero at p = -1 

Go (-I) = 4 sin 2&K, 

Let D’ and D- denote domains lying to the left and right of the line L, respectively. 
Then for values of p0 < a < n/2 , the coefficient in (3.9) can be factorized thus 

Go(p)=.+ 

1 
expz 

In Co(s)ds G+(P) PED+ 
s--p. = G-(P) PE D- 

(3.11) 

The functions G*(p) are analytic and have no zeroes in the domains D*, hence G* @)- 1 
as p-+ 00. 

To solve the inhomogeneous conjugate problem (3.9) on the line, we use the well-known 
representation /lo, 11/ 

pctgp+= 2K+ (P) K-(P) (3.12) 

K*(p)=++)/r(F) 

By using the factorization (3.11) and the representation (3.12), Eq.(3.9) on the line L 
can be written as follows: 

W(P) 

BK- (P) G-(P) + 
K+ (- i) K,” 

(P + f) fi+ (- 1) 
= _ K+(P) @+ (PI 

G+(P) 
- KaO 

p+i 
- 

The left side of this equation is analytic in D- and the right side in D+. On the 
basis of the principle of continuous extension they equal the same entire function. 
the asymptotic form (3.10) and the well-known relationships 

Using 

we obtain the formula 

K*@)=l/+p12+0(1),p-+oo 

PM (P) = - 4K- (p) G-(p) [-$- -I- 
)/JiK,o 

(P+QG+(--) I 

The absence of a pole inthetransform m-(p) at the point p = 0 determines the stress 
intensity factor and the desired solution 

- 
KII = -$nRK,“IG’ (-1) (3.13) 
@- (p) = 41/iiK,“K- (p)G- @)I(@ + 1)G+ (-I)) 

Passing to the limit in G+(p) as p-_, 
we obtain 

-1 and using the Sokhotskii-Plemelj formula/12/, 

G+(--)=llGD(--i)exp~~ArgG~(--f+il)e (3.14) 
0 

Introducing a new rectangular coordinate system E,n with origin at the tip of the crack 
(Fig.l), and setting r,<R, we arrive at the asymptotic expressions 

2Guc= + KII(~)“((~x + 3) sin-& + sin 

2Gu,=-+ 

-$)- oo[(si~~a-v)coscp+~sin~sincp]r. (3.15) 

where 

K~~($)"'((2x--3)~s~-tcos~~-o.~~sin2crw*scp+(~~a--)sin~]r~ 

To. cp are polar coordinates with origin at the crack apex, 
total displacement vector in the directions of the coordinate axes 

uk,u, are components of the 

The formula for the total volume strain e, 
EV tl , respectively. 

is found in a well-known manner 

AGE i , = - (X - 1) [ --$& sin + + T Q] (3.16) 
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Using the strength condition (1.3)., we obtain the crack-formation load. The dependence 
of this load on the angle a in the absence of adhesion is shown by the solid line in Fig.3, 
where a, is the minimum crack-formation load. It is assumed in the computations that v= 
0.25, p. = IO", SdS, - 0. 1. and the value of Us is determined from the approximate formula 

6, z 1.7Sol/hlR (3.17) 
On reaching the crack-formation load, here exactly as in Sec. 2 approximately identical 

macrostresses occur at the tip of the crack in a certain domain. Consequently, the direction 
of the originating microcracks will be considered to be random, and its length will be det- 
ermined by the method indicated for the tension. 

That direction for which the length mentioned is greatest is considered to be the most 
probable. r5 

Fig.3 ll iu JO 50 70 YO 

Fig.4 

Comparison of the crack-formation load constructed by means of criterion (1.3) with the 
load determined by well-known methods/l-4/ is represented in Fig.3 by the dashed line. The 
loads obtained are close everywhere except the direct one u = PO and OL = s/z. For these 
angles the stress intensity factor vanishes and the criterion of maximum tensile stress/l-4/ 
results in unlimited strength. 

4. Brittle half-plane with an edge crack. In this case the boundary conditions 
(3.2)-(3.5) remain unchanged, but the symmetry condition (3.1) is replaced by the condition 
of no stress on the lower part of the half-plane boundary 

e=--n/2:a~=t~=o,r~O (4.1) 

Application of the Mellin transform to the boundary condition (3.2) ,(4.1),(3.3),and (3.5) 
determines the transform coefficients (3.7) in terms of one unknown function W(p) 

A, (P) = (P sin pa COB a + cWb- (p)l(pq) 

B1 (P) = (P cos P a cos a f s-61 a- (PMPP) 
C,(p) = (p sin p a cos a - c+6)cD- (p)l(pq) 

D, (p) = @ co9 pa cos a + s+BW (p)l(pq) 

A, (P) = AI (P) - co8 @ + 1) a CD- (pY(4p) 

& (P) = B1 (P) - sin (P + 1) a UJ- (P)/(~P) 

G (P) = c, (P) + WJS (P - 1) ~Q,- (PH4P) 

D, (P) = 4 (P) + sin (P - 1) a Q- (P)/(~P) 

&=co!3 p2 
( 2 39). s*=sin(p+fa), 6=sin~p~-$-a)) 

Substitution of these expressions in the Mellin-transformed friction condition (3.4) 
results in the functional Wiener-Sopf equation (3.91, where now 

Ge (p) = - G, (P) / (2 sina P %) (4.2) 

C, (p) = co9 pn - 2p co9 a [(p - i)~cosa + sin al X sin 2pa + (2p2 cosZa - 1)cos 2pa 

This equation is obtained and solved in /lo/. The solution presented below differs from 
/lo/ in the selection of the connecting line (L). For such a choice the coefficient (4.21 
has neither poles nor zeroes along L if CG> PO, and tends to one as p - 00. For a E p. the 

function (4.2) has a first-order zero at p = -1 
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Go (-1) = 2 sin 2aK, 

The solution of (3.9) with the coefficient (4.2) and the appropriate quantity KII have 

the form (3.13). Here G+(-1) is defined, as before, b-y (3.14) in which G,(p)has the form 

(4.2). 
A computation by the strength condition (1.3) and (2.2),(3.15), and (3.16) shows that 

here, as in Secs.2 and 3, approximately identical macrostresses at the tip of the crack occur 
in a certain domain. Consequently, the considerations regarding the length and direction of 
the originating microcracks, discussedin thepreceding sections, hold here. 

The dependence of the crack-formation load on the angle cz when there is no adhesionbetween 
the crack edges is shown in Fig.4 (curve 1). As before, o, is understood to be the minimum 

crack-formation load when a body with one crack is compressed. The following approximate 

formula holds for it 
UC z 2.24 &)/L\IA (4.3) 

The computation is performed here for the same values of the parameters v.parSdSI as in 

the previous section. The crack-formation load constructed by the well-known method/l-4/ is 
shown in Fig.4 by the dashed line. Exactly as in Sec.3, the results are close everywhere, 
except along directions close to the angle of internal friction and the boundary of the half- 
plane where the well-known method results in unlimited crack-formation loads. 

The comparison of the crac'* .,-formation load when there is one crack (curve 1) with the 
corresponding load when there are two symmetric cracks (curve 2) is presented in Fig.4. The 
crack-formation loads in both cases are referred to the value of oc. defined by (4.3). It 
is seen that the presence of the second crack substantially reduces the crack-formation load 
in the range p0 ,ccz & 35"_ For angles close to n/2 the difference between the loads is erased, 
the latter grow rapidly as a grows, and approach the crack-formation load in a body without 
cracks. 

The author is grateful to M. Ia. Leonov for discussing the research and for useful com- 
ments. 
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